Voice over IP (VoIP) Vulnerabilities

The Technical Presentation

Diane Davidowicz
NOAA Computer Incident Response Team
N-CIRT
diane.davidowicz@noaa.gov

"Security problems in state of the art IP-Telephony systems can be found in **every product**[and] **must** (not should) be solved **before** deploying"

Utz Roedig

Darmstadt University of Technology

Overview

- Traditional Telephony Systems
- VoIP Brings New Threats to IP Networks
- VoIP Security Threat Overview
- VolP Threat Details
- VoIP Security Requirements and Security Solutions

Traditional Telephony Systems

- Traditional telephone system is a mature technology
 - Public Switched Telephone Network(PSTN) and Private Branch Exchange (PBX)
 - Established, stabilized & highly evolved over the past decades
 - High level of quality of service
 - Security
 - Confidentiality
 - High availability
 - Integrity
 - High reliability error free operation

Traditional Telephony Systems

- Consists of dedicated equipment
 - Enjoyed complete separation from Internet hostilities
 - Typically not available to attackers with average or below average skills

VoIP Overview

- Understanding the technology
 - Signaling plane
 - Call setup and tear down
 - gatekeepers and CCEs
 - Media transport plane
 - Carries the voice data
 - gateways and IP telephony endpoints
 - Management (administration) plane
 - Technically part of the signaling plane
 - Management interface can be attacked, thus its presented as a third plane for clarity
 - Assumption:

10/08/04

 Both the Signaling plane and the Media transport plane traverse the same IP network

- Migration from traditional PBX system to VoIP
 - Weakens the security posture of well established data networks
- How?
 - Poorly implemented VoIP components
 - Renders traditional IP firewall inadequate

- Poorly implemented IP stacks in VoIP devices
 - May lead to access of IP data systems
 - By establishing an inroad of compromised VoIP devices that ultimately leads to the targeted computer
 - Exists mostly due to rush to market
 - Companies need to generate revenue for new technology
 - Code quality and security implementation suffer
 - not atypical of any new technology
 - E.g., wireless technology

- Classical firewall technology is inadequate
 - IP telephony protocols are very complex.
 - Traditional IP firewalls can not handle the protocols
 - H.323 dynamically allocates both TCP and UDP for call setup and voice transport
 - Implementation may require
 - both inbound and outbound call set up capabilities
 - Complex protocols weaken the security posture of the traditional IP firewall
 - Thereby raising the threat of exposure of the internal Local Area Network (LAN) to attacks

- Classical firewall technology is inadequate
 - Latency intolerance of voice data
 - Outmodes classical IP firewalls
 - Solutions
 - Subvert them for voice data (i.e., create route to bypass firewall)
 - Bad idea!
 - Violates security policy
 - Renders firewall ineffectual
 - Exposes previously protected LANs
 - Firewalls perform Network Address Translation (NAT) for private internal address

- Solutions
 - Upgrade/replace classical firewall with VoIP firewalls
 - May prove cost prohibitive
 - Limited number of vendors providing VoIP firewalls
 - Complicated by
 - Market flux as a result of proprietary solutions
 - Can cause interoperability issues

- Dispel Myth: This is not the comfy, cozy PBX
 - This is an IP network
 - IP networks, if not air gapped, are in some way are exposed to the Internet
 - A fully integrated VoIP network more than likely would not be implemented in an air gapped IP Network

- Remember: VoIP device is an IP device
 - Just like any other IP device, it is vulnerable to the same types of threats
- Quality and Security of VoIP is in its infancy
 - Especially when compared to traditional PSTN/PBX networks
 - Many security issues of VoIP stem from flaws in
 - The design, implementation and configuration of the equipment
 - And the policy faults

- Critical to understand security features and vulnerabilities of this new technology
 - Failure to do so and failure to take appropriate precautions can result in
 - Unavailability
 - Inability to dial, receive phone calls, or continue conversations already in progress
 - Lack of privacy
 - Lack of integrity
 - Both in audio message integrity and billing integrity
 - Lack of authentication
 - Leads to impersonation and toll fraud
 - Lack of access control
 - Lack of stability
 - Lack of quality of service

- Other vulnerabilities facing VolP
 - Already established that Internet is big threat to VoIP
 - However, internal threat also increases dramatically
 - Most employees have access to local LAN ports that
 - allows them to plug IP sniffers into network
 - IP sniffers = laptops with Ethereal
 - (http://www.ethereal.com)
 - This was not so easy to accomplish with PBX system

- Signaling and media transport planes vulnerable to attacks against
 - Integrity
 - Confidentiality
 - Authentication
 - Non-repudiation

- VoIP audio data & signaling are vulnerable to
 - Eavesdropping
 - Jamming
 - Active modification
 - Toll stealing

- IP telephony components
 - Can be target of
 - DoS/DDoS Attacks
 - Attacks that lead to the compromise of the component
 - Compromised components
 - Reveal network infrastructure
 - Become a potential launch point for further attacks (e.g. source routing)
 - Into other IP Telephony components
 - Into IP data systems (computers, routers, etc.)
 - Viruses can disable OS hosting VoIP component

- IP telephony components
 - Attacks carried out against VoIP end user systems
 - Current attack analysis show that most have classic security problems
 - Some vulnerabilities have been known for decades
 - yet new devices still deployed with them

- Just to name a few:
 - Default administrator passwords
 - Weak Passwords (configured with maximum length of 6, 7, or 8 characters)
 - Vulnerable to dictionary attacks
 - Vulnerable to brute force attacks
 - Some implementations only allow numbers as password
 - Greatly reduces the key space
 - Worse, attacker can load new firmware with Trojan Horse backdoors
 - Not so trivial with traditional VoIP end systems
 - Java Phones and other Java telephony devices may make this trivial
 - PDA's VoIP over wireless may execute virus code too

- Just to name a few.....
 - Other implementation faults: vulnerable to malformed strings
 - Little effort required to conduct this attack and the password attack
 - Common method to cause DoS
 - Poorly written VoIP end user applications & devices
 - DoS may be self-inflicted: ex nmap, Harris Stat

- Just to name a few.....
 - These attacks were SUCCESSFUL
 - Phones crashed
 - Phones rebooted
 - Phones hung and had to be rebooted

- Just to name a few.....
 - Remote Administrative Interface
 - Passwords traverse network in clear text
 - Vulnerable to eavesdropping
 - Vulnerable to dictionary and brute force attacks from remote locations
 - If an HTTP interface, may have poorly written CGIs
 - Once the administrative interface compromised
 - Attacker can reset phone to factory specs
 - Can get user identities and E.164 numbers and change them, too
 - Can change the IP address for the H.323 Gatekeeper

- Just to name a few.....
 - Media plane: Weakly implemented user privacy
 - Real-time Transport Protocol (RTP) used to transmit audio over UDP
 - Symmetric encryption designed into protocol
 - Unfortunately, not widely implemented into devices despite availability in protocol
 - UDP is easily spoofed
 - Unencrypted RTP can be intercepted
 - And because of UDP, can be modified and played back
 - Modification may go undetected by receiver

- IP telephony components (continued)
 - Attacks carried out against: Gatekeeper
 - Man in the middle attack
 - Cryptographic protection in the extensions H.323 protocol would more securely thwart this
 - Commonly not implemented in the devices

- IP telephony components (continued)
 - Attacks carried out against: Gatekeeper
 - Default Policy issue
 - End user devices need to be portable
 - Method for registration with gatekeeper supports this
 - End user device uses H.225 (RAS) to register a mapping of its
 - E.164 number
 - Voluntary number of additional symbolic names (aliases)
 - And IP address

- IP telephony components (continued)
 - Attacks carried out against: Gatekeeper
 - Choice at gatekeeper is to
 - Allow any end user device to register
 - Or just allow pre-configured sets
 - Implementation flaw
 - Rather than be most restrictive and just allow pre-configured sets to register
 - Gatekeepers are typically configured to just allow any device to register
 - Faking user identity
 - Objective is to impersonate a user allowed to make international calls or toll calls
 - This is possible if gatekeepers aren't strictly configured to control this

- IP telephony components (continued)
 - Attacks carried out against: Gatekeeper
 - Gatekeeper DoS attacks
 - One type of DoS attack unregisters users
 - Then attacker registers user with a new IP address
 - To maliciously redirect calls originally intended for the user
 - Another attack sent regular and irregular H.323 PDUs
 - which cycled through the registration and deregistration of terminals
 - Kept gatekeeper busy enough that it could not perform regular tasks
 - This is in the signaling plane and only a small amount of bandwidth was consumed in the successful attack

- Security Requirements
 - Defined in terms of
 - Protocols
 - Operating Systems and Components
 - Administration interfaces
 - Other Security Systems (Firewalls, VPNs, etc.)
 - People, Policies
 - A little more followup on cypto

Security Requirements

(extracted from "Security Analysis of IP-Telephony Scenarios" by Utz Roedig)

- Protocols
 - What basic security services do they provide?
 - Enable them
 - Some protocols are currently being augmented to include security
 - ITU H.3xx/H.235 Encrypted RTP with key exchange (using H.425)
 - IETF SIP Encrypted RTP with key exchange (SIP message body)
 - Can technology like IP Security (IPSec) be leveraged?
 - Some implementations may be proprietary, beware.

Security Requirements

(extracted from "Security Analysis of IP-Telephony Scenarios" by Utz Roedig)

- Operating Systems and Components
 - Must be kept patched up to date
 - Ex Pingtel's VoIP SIP Phones, CISCO VoIP vulnerabilities
 - Cisco routers supporting VoIP were vulnerable
 - Systems and services must be secured
 - many vendors have neglected this step
 - e.g., invoke access and authentication controls where possible
 - enable only necessary services

Security Requirements

(extracted from "Security Analysis of IP-Telephony Scenarios" by Utz Roedig)

- Administration interfaces
 - Must be secured, is VPN or protocols like SSH or SSL/TLS available for interface?
 - Are access controls available and strong authentication?

Security Requirements

(extracted from "Security Analysis of IP-Telephony Scenarios" by Utz Roedig)

- Other Security Systems (Firewalls, VPNs, Radius)
 - IP Telephony must integrate into current security environment
 - Lack of VoIP Security solutions from most firewall vendors
 - exceptions: PIX, Checkpoint to name a few
 - Firewalls must be specifically designed with the hyper sensitive requirements of VoIP data
 - High reliability
 - High capacity
 - Low latency

Security Requirements

(extracted from "Security Analysis of IP-Telephony Scenarios" by Utz Roedig)

- People, Policies
 - People must know how to operate/install/design and secure services

Solutions:

- Cryptography
 - Seek implementations that leverage cryptography for
 - Signaling plane (H.323)
 - Media transport plane
 - This is a start, but not a panacea
 - DoS and malformed string attacks still remain possible
 - This is an access issue
 - IPSec/VPN VoIP enabled equipment goes a long way to preventing
 - Eavesdropping
 - Packet spoofing
 - Replay

- Solutions:
 - Cryptography
 - Providing message integrity, authentication, and privacy via IPSec technology
 - Problem: not all VoIP devices are IPSec enabled.
 - This should be a consideration in purchasing VoIP equipment
 - Performance issue
 - VoIP IPSec enabled devices should support the following
 - latency
 - QoS
- ToS byte must be in IP header, thus copied to IPSec header
- Bandwidth restrictions to preserve call and video quality